當 [EFe3(CO)9]2– 還原 BiCl3 可得到混合鉍與硫族之鐵羰基團簇物 [{EFe3(CO)9}Bi]– (E = Te, 1a; Se, 1b)。X光分析顯示1a 與 1b 為一四角椎構型,且裸露的鉍及硫族皆具有位向活性的孤對電子。1a 及 1b 可逐步進行甲基化與金屬化反應,來探討 6s/5s 及 6s/4s 的親核能力比較。在金屬化反應中,1a 與 1b 的鉍原子上的6s 孤對電子具非凡的親核特性,與金屬羰基片段 Cr(CO)5 有較好的反應性。然而,在甲基化反應僅 1b 中的硒原子上的 4s 孤對電子可與之反應。當 1a 與 1b 加入適當的氧化劑如 NaBiO3 與 K2SeO3 進行反應時,可得到剔除一 Fe(CO)3 頂點且具 Bi–E 鍵結之四面體化合物 [{EFe2(CO)6}Bi]– (E = Te, 4a; Se, 4b)。X光光電子光譜,X光吸收進邊緣結構及理論計算皆顯示上述所有混合鉍與硫族之鐵羰基團簇物中的 Bi 原子價數接近於 +1 價。由於帶電正性的 Bi 原子,1a(1b)、4a(4b) 以及金屬化的 3a(3b) 於固態結構中皆具有顯著的分子內及分子間之 Bi···E 作用力。此外,1a(1b) 及 4a(4b) 可藉此弱作用力形成線性的 ···Bi···E··· 及 Z 字形的 ···Bi–E··· (E = Te, Se) 鏈,其中金屬化的 3a(3b) 也可形成 Bi···E···E···Bi (E = Te, Se) 雙聚物鏈,上述的鏈狀聚合物可進一步藉由 C−H···O(carbonyl) 作用力擴展為二維超分子結構。這些帶正電之Bi所誘導的 Bi···E 與羰基輔助之弱作用力可有效的促使電子於三元 Bi−E−Fe 或四元 Bi−E−Fe−Cr 團簇物基底結構中的傳導,此結果導致這些錯合物具顯著的半導體特性 (1.01−1.21 eV)。more |